翻訳と辞書 |
Biquaternion algebra : ウィキペディア英語版 | Biquaternion algebra In mathematics, a biquaternion algebra is a compound of quaternion algebras over a field. The biquaternions of William Rowan Hamilton (1844) and the related split-biquaternions and dual quaternions do not form biquaternion algebras in this sense. ==Definition== Let ''F'' be a field of characteristic not equal to 2. A ''biquaternion algebra'' over ''F'' is a tensor product of two quaternion algebras.〔Lam (2005) p.60〕〔Szymiczek (1997) p.452〕 A biquaternion algebra is a central simple algebra of dimension 16 and degree 4 over the base field: it has exponent (order of its Brauer class in the Brauer group of ''F'') equal to 1 or 2.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Biquaternion algebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|